earticle

논문검색

Research on K-MEANS Clustering Algorithm Based on HADOOP

원문정보

초록

영어

This paper proposes an improved clustering algorithm on the basis of the characteristics of sampling and density. The initial k value and initial center are determined by sampling and density, and parallel improvement is based on the HADOOP platform. Through the experiment, the improved K-Means algorithm has good parallelism.

목차

Abstract
 1. Introduction
 2. Idea of K-Means Algorithm
  2.1. Procedure of the Algorithm
  2.2. Shortcomings of the Algorithm
 3. Improved K-Means Algorithm Based on Sampling and Density
  3.1. Concept
  3.2. Parallelized Improvement
 4. Experiment Design and Discussion
  4.1. Clustering Analysis
  4.2. Running Time
  4.3. Acceleration Rate
 5. Conclusion
 References

저자정보

  • Feng Hu Qiongtai Teachers College, Haikou 570100, china

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.