earticle

논문검색

Robust Machine Learning Approach for Large Data

초록

영어

Machine learning is ideal for exploiting the opportunities hidden in big data. It delivers on the promise of extracting value from big and disparate data sources with far less reliance on human direction. It is data driven and runs at machine scale. It is well suited to the complexity of dealing with disparate data sources and the huge variety of variables and amounts of data involved. And unlike traditional analysis, machine learning thrives on growing datasets. The more data fed into a machine learning system, the more it can learn and apply the results to higher quality insights. In this paper we propose a robust machine learning approach for dealing with large data set. Through experimental results, proposed method performs well on large data sets.

목차

Abstract
 1. Introduction
 2. Incremental KPCA
  2.1. Eigenspace Updating Criterion
 3. SVM and LS-SVM
  3.1. Support Vector Machine
  3.2. LS -SVM for Big Data 
 4. Experiment 
  4.1. YouTube Comedy Slam Preference Data Set 
  4.2. KDD CUP 99 Data
  4.3. Wine Data
  4.4. NIST Handwritten Data Set
  4.5. Comparison with SVM
 5. Conclusion and Remarks 
 Acknowledgment
 References

저자정보

  • Byung Joo Kim Department of Computer Enginerring Youngsan University, Korea

참고문헌

자료제공 : 네이버학술정보

    ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

    0개의 논문이 장바구니에 담겼습니다.