earticle

논문검색

K-means Parallelization Algorithm Based on MapReduce

초록

영어

Spatial Cluster analysis is another important technique in the field of spatial data mining, especially the K-Means spatial clustering method, which can deal with spatial objects with geographical location and attribute. However, with the development of the information society, the spatial data grows explosively, but the serial algorithm has low computing efficiency and is difficult to process massive spatial data. Aiming at spatial with a double meaning of location and attribute, the paper designed and implemented K-Means spatial clustering parallel algorithm on Hadoop. Using Yahoo Weibo user data is to do clustering analysis. Finally, the visualization of clustering results was implemented by Google Map.

목차

Abstract
 1. Introduction
 2. K-Means Spatial Clustering Algorithm
  2.1. Spatial Clustering
  2.2. K-Means Clustering
  2.3. K-Means Spatial Clustering
 3. Design of Spatial Clustering Algorithm Based on K-Mean Value
  3.1. Parallel Analysis of the Algorithm
 4. Experiment Design and Discussion
  4.1. Data Pre-Treatment
  4.2. Similarity Measurement
  4.3. Visualization and Analysis of Clustering Results
 5. Conclusion
 Acknowledgement
 References

저자정보

  • Shuguang Wang Jilin Communications Polytechnic, Changchun 130012, china
  • Chao Jiang Jilin Communications Polytechnic, Changchun 130012, china

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.