earticle

논문검색

Parameters Optimization for Extended-range Electric Vehicle Based on Improved Chaotic Particle Swarm Optimization

초록

영어

Extended-range electric vehicle is considered to be the ideal transition type for electric vehicle. The optimal operation curve control strategy was proposed for a 12 meter-long range extended electric bus. With exponential function inertia weight adjustment and local chaos substitution, an improved chaotic particle swarm optimization algorithm was applied to optimize the key parameters of energy management strategy. Based on MATLAB/Simulink, full vehicle model and corresponding control strategy were built. The simulation results with typical city driving cycles illustrate that, comparing with standard particle swarm optimization, the new algorithm can greatly improve the convergence speed and optimizing precision, and the optimal parameters can be obtained.

목차

Abstract
 1. Introduction
 2. E-REV Energy Management Control Strategy
  2.1. Power-Train System Structure
  2.2. Optimal Operation Curve Control Strategy
 3. Improved Chaotic Particle Swarm Optimization (ICPSO) Algorithm
  3.1. Chaotic Mapping
  3.2. Exponential Function Inertia Weight Adjustment Strategy
  3.3. Local Chaos Substitution
 4. Parameters Optimization based on ICPSO Algorithm
  4.1. Optimization Objective
  4.2. Parameters Optimization
 5. Simulation and Result Analysis
 6. Conclusions
 Acknowledgements
 References

저자정보

  • Yongchen Jiang Collaborative Innovation Center for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China
  • Cheng Lin Collaborative Innovation Center for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China
  • Wanke Cao Collaborative Innovation Center for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.