원문정보
초록
영어
Research on personalized recommender service that uses big data has gained considerable attention given the increasing volume of contents being created. This development indicates the need for service providers to collect personal information and content rating data to personalize content recommendations. Previous studies on this topic proposed algorithms to offer improved recommendations using minimal rating data or service designs and increase the number of ratings. However, limited studies have been conducted on the factors that motivate the ratings input of users, as well as the factors that influence their continuous usage of recommender service. The present study explored the factors that motivate users to enter ratings by conducting in-depth interviews with users who use recommender services. The meanings of these ratings were also explored. Results show that the meaning and usage range of ratings differed based on the stage of a user's with utilization of the service. When users input an initial rating, they treat such a rating as a database to save the impression of a past experience. Such a rating is then used as a tool to reflect the current feeling and thoughts of a user. In the end, users were not only interested in their own rating system, but they also actively sought out the meaning of the rating systems of others and utilized them. Users also expressed mistrust in the recommendations of the service because they were aware of the limitation of the algorithms. This study identified a number of practical implications regarding recommender services.
한국어
방대한 콘텐츠가 생산되고 소비되면서 빅데이터를 활용한 개인 추천 서비스가 최근 주목 받고 있다. 개인 추천 서비스를 위하여 개인 정보나 콘텐츠 평가 정보를 수집하는 것은 서비스 제공자 입장에서 중요해지고 있다. 기존 연구들은 적은 평점 정보로 더 나은 추천을 제공할 수 있는 알고리즘을 제안하거나, 평점의 양을 늘리기 위한 서비스 디자인을 제시하였다. 그러나 추천서비스 사용자가 어떤 동기로 평점을 입력하고, 서비스를 지속적으로 사용하는지에 대한 연구는 거의 없었다. 본 논문에서는 추천 서비스를 사용하고 있는 사용자들을 심층 인터뷰하여 평점 입력의 동기와 평점의 의미에 대하여 탐구하였다. 그 결과, 서비스를 경험 하면서 평점의 의미와 활용 정도가 달라짐을 알 수 있었다. 초기 평점을 입력할 때에는 과거 경험에 대한 데이터베이스를 구축하는 의미로 활용하였고, 초기 평점 단계를 지나면 현재의 느낌과 생각을 반영하는 도구로 활용하였다. 이 과정에서 자신의 평점 체계를 정교하게 다듬으며 자신만의 의미를 부여하는 모습을 보였다. 마지막 단계에서는 자신의 평점 체계뿐만 아니라 다른 사람의 평점 체계나 평점의 의미를 읽어내고 적극적으로 활용하는 모습을 보인다. 서비스에서 제공하는 알고리즘의 한계를 파악하고 있기 때문에 서비스의 추천을 불신하기도 하였다. 연구 결과를 바탕으로 추천 서비스에 대한 실무적 시사점을 도출하였다.
목차
Ⅰ. 서론
Ⅱ. 추천 시스템에 관한 연구
2.1 추천 알고리즘에 관한 연구
2.2 사용자의 평점 평가 행위에 관한 연구
2.3 사용자의 평가를 늘리기 위한 요인에 관한 연구
Ⅲ. 연구 방법
3.1 데이터 수집
3.2 데이터 분석
Ⅳ. 결과
4.1 사용 정도에 따른 단계 구분
4.2 도입기 - “내가 다 찍어 보겠다”
4.3 적응기 - “나의 박스에 넣는다”
4.4 응용기 - “딱 보인다”
4.5 이행 조건
Ⅴ. 토론 및 시사점
5.1 실무적 시사점
5.2 이론적 시사점
Ⅵ. 결론
참고문헌
Abstract
