earticle

논문검색

Research on Stock Price Prediction Model based on GA Optimized SVM Parameters

초록

영어

This paper construct the predicted model based on support vector machine (SVM) for the Shanghai Composite Index, acquired the model parameters using genetic algorithm optimization was carried out, combined with k-fold cross method. Experiments based on the start date to February 2011 total 4948 trading day data, 10 fold cross circulation experiments of GA optimization; get the most accurate model parameter of SVM. At last, the regression model is used to predict, and the relative error of regression prediction is 0.11, and the accuracy of regression prediction is higher. In conclusion, this model can be used to predict the Shanghai Composite Index.

목차

Abstract
 1. Introduction
 2. Algorithm Analysis
  2.1. The GA Algorithm Principle
  2.2. SVM Regression Prediction Algorithm
 3. GA-SVM Optimization of the Stock Market Forecast Model
 4. Empirical Analysis
  4.1. Index Selection
  4.2. Experiment Design
  4.3. Results Analysis
 5. Conclusions
 Acknowledgments
 References

저자정보

  • Liang bang-long School of Economics and Management, Tongji University, Shanghai 200092, China
  • Lin jie School of Economics and Management, Tongji University, Shanghai 200092, China
  • Yuan Guanghui School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai 200433, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.