earticle

논문검색

Parallel Collaborative Filtering Recommendation Algorithm based on Cloud Computing

초록

영어

The paper Proposed Item parallel collaborative filtering recommendation algorithm (IP-CF). Through designing efficient parallel algorithm, compute-extensive procedures are distributed to different processing nodes in Hadoop platform. Taking advantage of parallel computing, we accelerate the response of recommendation. The experimental results show that our proposed algorithm IP-CF is more efficient and scalable than current parallel algorithms.

목차

Abstract
 1. Introduction
 2. Collaborative Filtering Recommendation Algorithm based on item
 3. Parallelization of Item-based Collaborative Filtering Recommendation Algorithm
 4. Experiment Design and Discussion
  4.1. Experimental Platform and Dataset
  4.2. Measurement Method
 4.3. Experimental Results and Analysis
 5. Conclusion
 References

저자정보

  • Guohua Zhang Northeast Petroleum University, No.199, Fazhan RD., High-tech development zone, Daqing, China
  • Feng Bao Northeast Petroleum University, No.199, Fazhan RD., High-tech development zone, Daqing, China
  • Sheng Bai Northeast Petroleum University, No.199, Fazhan RD., High-tech development zone, Daqing, China

참고문헌

자료제공 : 네이버학술정보

    ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

    0개의 논문이 장바구니에 담겼습니다.