earticle

논문검색

Research on Collaborative Filtering Algorithm based on Cloud Computing

원문정보

초록

영어

In order to solve this problem of cloud model, this paper presents another new collaborative filtering recommendation algorithm by combining the item classification and cloud model. Firstly the algorithm utilizes the item classification information and cloud model to compute items inner-similarity, and then gets the scores from neighbor items which have the highest similarity and uses their scores to forecast the unrated inner-class items. Secondly, the neighbors of user are obtained by computing the inner-class user similarities in the cloud model, providing the final forecast grade and carrying out the recommendation.

목차

Abstract
 1. Introduction
 2. Collaborative Filtering Improvement Algorithm based on Cloud Model
  2.1. Similarity Measurement Methods based on Cloud Model
  2.2. Score Forecasting Algorithm of the Cloud Model
  2.3. Collaborative Filtering Improved Algorithm based on Cloud Model
 3. Experiment Design and Discussion
  3.1 Experimental Dataset
  3.2 Evaluation Criteria
  3.3 Experiment and Result Analysis
 5. Conclusion
 Acknowledgement
 References

저자정보

  • Dan Zhang Institute of Technology, Mudanjiang normal university, Mudanjiang 157000, china

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.