earticle

논문검색

Research on the Impact of Advanced Data Mining Algorithm on Physical Education Quality

원문정보

초록

영어

Concerning the condition that there is a glittering array of disadvantages such as frequent candidate collection of Apriori algorithm, this paper comes up with cost-sensitive filtering matrix Apriori algorithm based on weighting. What’s more, with the help of FP-tree algorithm, we can carry out cost-sensitive learning through relevant data of its constructed decision tree to set different weighting for data and confidence level.

목차

Abstract
 1. Introduction
 2. Apriori Algorithm Based on Association Rules
  2.1. Apriori Algorithm
  2.2. Analysis of Algorithm Deficiency
 3. Advanced Apriori Mining Algorithm
  3.1. Cost-Sensitive Learning
  3.2. Setting the Confidence Level of Weighting
  3.3. Finding K-Frequency Set by Using Non-frequency Filter Matrix Set
  3.4. Generation of Strong Association Rules
  3.5 Initial Matrix Required by Non-frequency Filter Matrix Apriori Algorithm
 4. Simulation Experiment
  4.1. Application of the Present Algorithm
  4.2. Comparison with Other Related Mining Algorithms
 5. Conclusion
 References

저자정보

  • Nan Wang sports department of Zhengzhou University,China,450001

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.