earticle

논문검색

Dynamics System Analysis and Intelligent Identification of Aquaculture Water Quality Data

원문정보

초록

영어

Data analysis on environmental factors is crucial to aquaculture. Several significant parameters (temperature, pH and dissolved oxygen) and factors related to it are discussed in this paper. Data preparation including fixing some missing data and inaccurate records by non-linear function approaching in the first sampling process. Then the utilization of deterministic tracking theory is adopted for dynamic system analysis. Furthermore, time series analysis from different water layers based on this theory suits the real environment well, Radial Basis Function Neural Networks is well applied in tracking the parameters trend both globally and locally. The results provide effective references for systemic data analysis and control engineering.

목차

Abstract
 1. Introduction
 2. Preliminary Results
  2.1. Background of Aquaculture Conditions
  2.2. Acquisition of Water Quality Data
  2.3. Preparation of Water Quality Data
 3. Dynamics Analysis of Aquaculture Water Quality Data
  3.1. Dynamics Analysis of Temperature
  3.2. Dynamics Analysis of Dissolved Oxygen
  3.3. Dynamics Analysis of PH
 4. Identification Based on Dynamics system and Artificial Intelligence
  4.1. Dynamics Model of System Parameters
  4.2. Radial Basis Function Neural Networks Identification
 5. Conclusions & Future Works
 References

저자정보

  • Xiaofei Huang Hainan College of Software Technology, Qionghai 571400, China, College of Information Science and Technology, Hainan University, China
  • Wei Wu College of Information Science and Technology, Hainan University, China Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.