earticle

논문검색

Study on a Novel Short-Term Load Forecasting Method Based on Improved PSO and FRBFNN

초록

영어

In order to accurately, fast and efficiently forecast the short-term load of power system, an improved particle swarm optimization algorithm is proposed to optimize the parameters of fuzzy radial basis function fuzzy neural network(FRBFNN) model in order to train the FRBFNN model for obtaining the optimized FRBFNN(IWPSRFN) method. In the proposed IWPSRFN method, the linear decreasing weight method is used to adjust the inertia weight of PSO algorithm. The global optimization ability of improved PSO algorithm is used to adjust the parameters of FRBFNN model by putting these parameters in the particle encoding, then the optimal values are found in the large number of viable solutions by continuous iteration of improved PSO algorithm. The found optimal values are regarded as the parameters of FRBFNN model to obtain the final IWPSRFN method for forecasting short-term load of power system. Finally, a certain region is selected to test the effectiveness of IWPSRFN method, the experiment results show that the improved PSO algorithm can effectively optimize the weights of FRBFNN and solve the slow convergence speed, and the IWPSRFN method can obtain the higher prediction accuracy and is an effective method for forecasting short-term load.

목차

Abstract
 1. Introduction
 2. PSO Algorithm and Improved PSO Algorithm
  2.1. PSO Algorithm
  2.2. An Improved PSO Algorithm
 3. Fuzzy Neural Network(FNN)
 4. The IWPSRFN Model and Algorithm
  4.1. The Optimized RBFFNN Model Based on Improved PSO Algorithm
  4.2. The Steps of IWPSRFN Model
 5. Application of the IWPSRFN Algorithm in Load Forecasting
 6. Conclusion
 Acknowledgment
 References

저자정보

  • Yang Liu College of Information Science and Engineering, Hunan City University, Yiyang 413000, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.