earticle

논문검색

Analyze NYC Taxi Data Using Hive and Machine Learning

초록

영어

Machine learning utilizes algorithms to run predictive models that learn from a large dataset in an iterative manner. Predictive models are used in many business applications to gain competitive advantages and understand customers better. This paper concentrates on analyzing New York taxi trips and fares and presenting the methodology we used to address the problem and results reached by building through Azure Machine learning studio. Our practical approach starts with an exploratory analysis of NYC taxi data via Microsoft Power BI. Then more extensive analysis was conducted through Apache Hive data warehouse. Hive was built on top of Hadoop enabling data synopsis, query, and analysis. We implemented Hive queries to create tables in Microsoft Azure blob storage and store the data in external tables. Finally, we conducted our experiment by creating, training and testing the module. The finding and insights pertain to the main variables of our experiment: pick up time, drop off time and tip amount that could be integrated into an application and enhance business by picking the location with the highest tip for example.

목차

Abstract
 1. Introduction
 2. Similar Work
 3. Review of HDInsight, MapReduce, Hive and Azure Machine Learning Studio
  3.1 HDInsight and Blob Storage
  3.2. MapReduce
  3.3. Hive
  3.4 Business Power BI
  3.5. Azure Machine Learning Studio
 4. Microsoft Azure Ingest data
  4.1. Load Data Into Storage Environments for Analytics
  4.2 Explore and Pre-Process Data through Business Power BI
  4.3 Explore and Pre-Process Data through Azure Hdinsight and Hive Queries
 5. Import Data into Azure Machine Learning Studio with the Reader Module
  5.1 Explore Data in the Predictive Analytics Process
  5.2 Create, Deploy & Consume Model
 6. Conclusion
 References

저자정보

  • Bayan Alghuraybi Grad Student, Prof., Department of Computer Information Systems, California State University Los Angeles
  • Krishna Marvaniya Grad Student, Prof., Department of Computer Information Systems, California State University Los Angeles
  • Guojun xia Grad Student, Prof., Department of Computer Information Systems, California State University Los Angeles
  • Jongwook Woo Prof., Department of Computer Information Systems, California State University Los Angeles

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.