earticle

논문검색

Branford의 기하 증명 단계에 대한 고찰

원문정보

A study on the steps of Branford's proof in Geometry.

이다희, 천지혜, 신상욱

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

This paper introduces each step with Branford is a geometric proof-flow occurs in the present, and the proof, as explained in Branford look at the problems that overlooked when divided into three phases. First, the intuitive proof is a proven and universal generalization, mathematical proof deals with abstract math concepts through manipulation of mathematical symbols. But this seems excessive leap that takes place between the two will have. Second, the student can prove in an intuitive level but there did not reach the level of mathematical proof, if the student is able to use their certification process to a logical and rational verbal proof enough to convince others, there is the problem of whether the student to see the level of intuitive proof. In this paper, through the intuitive proof and mathematical proof as a way to compensate for this problem, termed as' intuitive mathematical proof, and the proof is intended to refine the three-phase theory of Branford geometric theory proved to step 4.

목차

Abstract
 Ⅰ. 서론
  1. 연구의 필요성과 목적
 Ⅱ. 문헌 고찰
 Ⅲ. 결론
 참고문헌

저자정보

  • 이다희 Lee, Da Hee. 고려대학교 대학원
  • 천지혜 Chun, Ji Hye. 고려대학교 대학원
  • 신상욱 Shin, Sang-wook. 고려대학교 대학원

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.