earticle

논문검색

Improving Unconstrained Iris Recognition Performance via Domain Adaptation Metric Learning Method

초록

영어

To improve unconstrained iris recognition system performance in different environments, a performance improvement method of unconstrained iris recognition based on domain adaptation metric learning is proposed. A kernel matrix is calculated as the solution of domain adaptation metric learning. The known Hamming distance computing by intra-class and inter-class is used as the optimization learning constraints in the process of iris recognition. An optimal Mahalanobis matrix is computed for certain cross-environment system, then distance between two iris samples is redefined. The experimental results indicate that the proposed method can increase the accuracy of the unconstrained iris recognition in different circumstances, improving the classification ability of iris recognition system.

목차

Abstract
 1. Introduction
 2. Unconstrained Iris Recognition and Similarity Measure
  2.1. The Unconstrained Iris Recognition System
  2.2 Similarity Measure for Iris Recognition
 3. DAML Method and Novel Resolving Scheme
  3.1. Framework of DAML Method
  3.2 Constraints for Optimal Matrix Learning
  3.3 Kernel Solution of Optimal Mahalanobis Distance Matrix
 4. Optimization Algorithm Based on DAML Method
  4.1 Optimal Target in Unconstrained Iris Recognition
  4.2. Calculating Optimal Matrix for Iris Recognition
  4.3. Iris Feature Matching
 5. Experimental Details and Results
  5.1. Unconstrained Iris Image Dataset
  5.2. Segmentation and Feature Extraction
  5.3. Experimental Settings
  5.4. Experimental results
 6. Conclusion
 References

저자정보

  • Yan Fei College of Communication Engineering, Jilin University, Changchun 130025, China
  • Zhou Changjiu Key Laboratory of Bionic Engineering of Ministry of Education, Jilin University, Changchun 130025, China, Advanced Robotics and Intelligent Control Centre, Singapore Polytechnic, Singapore
  • Tian Yantao College of Communication Engineering, Jilin University, Changchun 130025, China, Key Laboratory of Bionic Engineering of Ministry of Education, Jilin University, Changchun 130025, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.