earticle

논문검색

Localization of WSN Using Fuzzy Inference System with Optimized Membership Function by Bat Algorithm

초록

영어

Localization is one of the most important research topics in the wireless sensor network applications. To improve the indoor localization accuracy, the centroid localization algorithm based on Mamdani fuzzy system has been adopted to attain the weight between sensor node and anchor node. This paper proposes a novel optimized input membership function by bat algorithm in fuzzy inference system using the data of received signal strength in real indoor condition. The author has realized the algorithm on Zigbee platform and the experimental comparison on other different centroid localization algorithms indicates that Mamdani fuzzy inference adopting the membership function optimized by bat algorithm renders smaller mean localization errors.

목차

Abstract
 1. Introduction
 2. Localization Algorithm Model
  2.1. RSS Features and Ranging Model Analysis
  2.2. Weighted Centroid Localization Algorithm
  2.3. Bat Algorithm
 3. Fuzzy Inference System
  3.1. Input Membership Function
  3.2. Output Membership Function
  3.3. Fuzzy Rules
  3.4 Fuzzy Inference Process
 4. Experiment and Analysis
  4.1. Experimental Environment Setting
  4.2. Hardware of Localization System
  4.3. Average Localization Error
  4.4. Experiment and Analysis
 5. Conclusions
 References

저자정보

  • Hao Shi College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
  • Wanliang Wang College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
  • Liangjin Lu College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.