earticle

논문검색

Implementation of an Immersive Hand Interface Using HNMA Gesture Learning Method in Real-time

초록

영어

We present a method of recognizing hand gestures using RGB values, depth value, hand center coordinates, and finger counting data from Microsoft’s Kinect for implementing the immersive hand interface to overcome inconvenience using HMD. First, we set the RGB values and depth range to detect the hand. This processing can improve recognition rate. Then, through double labeling, outside labeling, and inside labeling, we detect the hand without noise. Then, we use the distance vector to obtain the hand center. It also removes everything except the hand area, including removal of the wrist. After detection of the hand, we use HNMA (Multi Information-Hippocampus Neuron Modeling Algorithm) to recognize the hand gesture. This algorithm helps to improve the recognize rate. It is difficult to use the interface when using an HMD (Head Mount Display) display machine. This algorithm can make an immersive environment.

목차

Abstract
 1. Introduction
 2. Background Theory
  2.1. Hand Detection Based on Kinect
  2.2. Hippocampus Neuron Modeling Theory
 3. Proposed Algorithm
  3.1. Hand Detection Processing
  3.2. Learning Algorithm Setting
  3.3. Experimental Results Disseminate
 4. Conclusion and Future Research
 Acknowledgment
 References

저자정보

  • Gi-Woo Kim Dong-A University, Dept. of Electronics Engineering, 37 Nakdong-daero 550 beon-gil Saha-gu, Busan, Korea
  • Hye-Youn Lim Dong-A University, Dept. of Electronics Engineering, 37 Nakdong-daero 550 beon-gil Saha-gu, Busan, Korea
  • Dae-Seong Kang Dong-A University, Dept. of Electronics Engineering, 37 Nakdong-daero 550 beon-gil Saha-gu, Busan, Korea

참고문헌

자료제공 : 네이버학술정보

    ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

    0개의 논문이 장바구니에 담겼습니다.