earticle

논문검색

Study of Indoor Positioning Method Based on Combination of Support Vector Regression and Kalman Filtering

목차

Abstract
 1. Introduction
 2. Related Work 
 3. SVR Location Algorithm 
  3.1. Overview
  3.2. Location Prediction Model
 4. Kalman Filtering Algorithm
 5. Experiment Results and Analysis
  5.1. Simulation Scene
  5.2 Realistic Scene
 6. Conclusion and Future Work 
 Acknowledgements
 References

저자정보

  • Yu Zhang Shanghai Institute of Measurement and Testing Technology, Shanghai, China, East China Normal University, Shanghai China
  • Lian Dong Shanghai Institute of Measurement and Testing Technology, Shanghai, China
  • Lei Lai Shanghai Institute of Measurement and Testing Technology, Shanghai, China
  • Lizhi Hu Shanghai Institute of Measurement and Testing Technology, Shanghai, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.