earticle

논문검색

A Novel Feature Selection Based Gravitation for Text Categorization

초록

영어

The high dimensionality of feature space is a big hurdle in applying many sophisticated methods to text categorization. The feature selection method is one of methods which reduce the high dimensionality of feature space. In this paper, we proposed a new feature selection algorithm based on gravitation, named GFS, which regards a feature occurring in one category as an object, and all objects corresponding to a feature occurring in various categories can constitute a gravitational field, then the gravitation of a feature with unknown category label on which all objects in the gravitational field act is used for feature selection. We have evaluated GFS on three benchmark datasets (20-Newgroups, Reuters-21578 and WebKB), using two classification algorithms, Naïve Bayes (NB) and Support Vector Machines (SVM), and compared it with four well-known feature selection algorithms (information gain, document frequency, orthogonal centroid feature selection and Poisson distribution). The experiments show that GFS performs significantly better than other feature selection algorithms in terms of micro F1, macro F1 and accuracy.

목차

Abstract
 1. Introduction
 2. Related Work
  2.1. Information Gain
  2.2 Document Frequency
  2.3. Orthogonal Centroid Feature Selection
  2.4. Measure Using Poisson Distribution
 2. Algorithm Description
  2.1. Activation
  2.2. Algorithm Implement
 3. Experimental Setup
  3.1. Validation
  3.2. Datasets
  3.3. Text Representation
  3.4. Classifiers 
  3.5. Evaluations 
 4. Results
  4.1. Results on 20-Newsgroups Corpus
  4.2. Results on Reuters-21578 Corpus
  4.3. Results on WebKB Corpus
 5. Analysis and Discussion
  5.1. Statistical Analysis 
  5.2. Discussions 
 6. Conclusion
 Acknowledgment
 References

저자정보

  • Jieming Yang College of Information Engineering, Northeast Dianli University, Jilin, Jilin, China
  • Zhiying Liu College of Information Engineering, Northeast Dianli University, Jilin, Jilin, China
  • Zhaoyang Qu College of Information Engineering, Northeast Dianli University, Jilin, Jilin, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.