earticle

논문검색

Data Mining Methods for New Feature of Malicious Program

초록

영어

Rapid Propagation of malicious program has caused great harm to the security of user information, the traditional way of killing methods, which is lagging behind and non-intelligent, has been unable to meet the demand of current detection. Studying the new malicious detection method on Windows Platform, screening out intelligent detection rules model feature of malicious executable and extracting the new malicious program detection methods based on data mining. Introducing the sample data processing and feature selection process, analyzing and simulating the new classification method, the result shows that the malicious program model can effectively improve the detection accuracy and reduce the rate of false negatives and false positives.

목차

Abstract
 1. Introduction
 2. The Key Technology
  2.1 Malicious Programs
  2.2 Data Mining
 3. Sample Data Processing
  3.1 Sample Data Screening
  3.2 Sample Data Standardization
  3.3 Sample Data Analysis and Processing
 4. Screening of New Features
  4.1 Delete the Data of the Same Attributes and the Data of Linear Correlation between Attributes
  4.2 Redundant Data Processing
 5. Feature Evaluation
 6. Extract Rules
 7. Epilogue
 Acknowledgements
 References

저자정보

  • Haixu Xi Jiangsu University of Technology, No.1801, Zhongwu Avenue, Changzhou City, Jiangsu Province, China
  • Hongjin Zhu Jiangsu University of Technology, No.1801, Zhongwu Avenue, Changzhou City, Jiangsu Province, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.