earticle

논문검색

Research on Personalization Algorithm based on Collaborative Filtering

초록

영어

For the issue of single CF algorithm performing low recommendation precision, we propose an adaptive Adaptive-Boost.RT ensemble learning algorithm. First, the base regression predictor is formed by minimizing the error function of user’s predicting ratings via gradient descent algorithm. Then, we introduce an adaptive error parameter, which has statistical property and can be adjusted automatically by the predict error, instead of original parameter. Experiments results demonstrate that this ensemble learning algorithm can improve performance of single CF model significantly.

목차

Abstract
 1. Introduction
 2. Ensemble Learning Summary
  2.1 Basic Conception
  2.2 Individual Generation Method
 3. An Improved Adaptive-Boost Collaborative Filtering Algorithm
  3.1. Design of base Class Learning Algorithm
  3.2. Design of the Improved Adaptive-Boost. RT Algorithm
 4. Experiment Design and Analyst
  4.1. Experimental Data
  4.2 Experiment Design and Discussion
 5. Conclusion
 References

저자정보

  • Liu Feng Heilongjiang University of Technology, Jixi 158100, china,

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.