earticle

논문검색

The Research on Fusion and Diagnosis Method of Multi Soft Fault of Nonlinear Analog Circuit

초록

영어

For the single source characteristics of the insufficient problem of nonlinear analog circuit soft fault diagnosis, we propose a new method that is based on dual Wiener core for fault diagnosis of intelligent information optimization fusion[1,2,3,4,5], firstly, the incentive is Gauss white noise, after sampling we obtain the Wiener core of circuit and power which is used from the discrete Wiener core, then use the improved genetic algorithm, make the feature selection and fusion combination as an optimization problem, propose intelligent optimization fusion extraction based on the improved genetic algorithm, the circuit set total Euclidean distance as the objective function optimizes, the different information in feature layer can be organic integration, then use the BP neural network for intelligent diagnosis. Experiments show that the method can effectively improve the accuracy of the diagnosis of nonlinear multiple soft faults.

목차

Abstract
 1. Introduction
 2. Intelligent Fault Diagnosis Based on Wiener Kernel Information Fusion
  2.1 The Acquisition of Weiner Core
  2.2 The Intelligent Optimization and Fusion Selection Dual Core Feature
  2.3 Neural Network Design and Training
  2.4 Test and Diagnosis of Actual Circuit
 3. Examples of Fault Diagnosis
 4. Experimental Results and Analysis
 5. Conclusions
 References

저자정보

  • Haijun Lin Harbin University of Science and Technology, Harbin, China
  • Jiren Han Harbin University of Science and Technology, Harbin, China
  • Xuhui Zhang Harbin University of Science and Technology, Harbin, China
  • Jingbo Xu Harbin University of Science and Technology, Harbin, China
  • Yunfeng Liu Harbin University of Science and Technology, Harbin, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.