earticle

논문검색

Human Behavior Recognition Method based on Image Sequences

초록

영어

Most researches on human behavior recognition are mainly based on the features of whole body motion. This paper proposed a hierarchical discriminative approach for recognizing human behavior based on limbs motion. The approach consists of feature extraction with mutual motion pattern analysis and discriminative behavior modeling in the hierarchical manifold space. A cascade CRF is introduced to estimate the motion patterns in the corresponding manifold subspace, and the trained SVM classifier is used to predict the behavior label for the current observation. The results on motion capure data prove the significance motion analysis of body parts, and the results on synthetic image sequences are also presented to demonstrate the robustness of the proposed algorithm.

목차

Abstract
 1. Introduction
 2. Motion Pattern
  2.1. Hierarchical Latent Variable Space of Human Behaviors
  2.2. Visualization of Partial Body Movement Trails
  2.3. Trajectory Clustering
 3. Single Behavior Modeling based on Discriminative Models
 4. Experiment Design and Discussion
  4.1 Single behavior database
  4.2. Results of Experiments with Motion Capture Data
 5. Conclusion
 References

저자정보

  • Yanhua Chen Modern education technology center, Neijiang Normal University, NeiJiang 641100, china

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.