earticle

논문검색

Microscopic Image Segmentation Method based on SVM

초록

영어

In this paper, the existing microscopic image segmentation method is studied, by comparing the segmentation result, the support vector machine (SVM) of microscopic image segmentation method has good precision, deserves further research.

목차

1. Introduction
 2. The Existing Cell Nucleus Extraction Method
  2.1. The Method Based on Threshold
  2.2. The Method based on Gradient (including Amplitude and Direction)
  2.3. The Method based on Region
 3. Support Vector Machine (SVM) Method
  3.1. The Thoughts of Support Vector Machine (SVM) Applied to Split
  3.2. Support Vector Machine Segmentation Experiments
  3.3. Effects of Different Samples Number for the Accuracy of the Segmentation
 4. The analysis of Result
 4.1. Threshold Method
 4.2. The Gradient Operator Method and K-Means Clustering Algorithm in the Lab Color Space
 5. Conclusion
 References

저자정보

  • Li Jianyi North China Institute of Aerospace Engineering, Langfang, Hebei, 065000, P.R. China
  • Wang Huijuan North China Institute of Aerospace Engineering, Langfang, Hebei, 065000, P.R. China
  • Li Shufeng Institute of Technology, Langfang, Hebei, 065000, P.R. China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.