earticle

논문검색

Skeleton Generation for Digital Images Based on Performance Evaluation Parameters

초록

영어

Skeletonization is a crucial step in many digital image processing applications like medical imaging, pattern recognition, fingerprint classification etc. The skeleton expresses the structural connectivities of the main component of an object and is one pixel in width. Present paper covers the aspects of pixel deletion criteria in the skeletonization algorithms needed to preserve the connectivity, topology, sensitivity of the binary images. Performance of different skeletonization algorithms can be measured in terms of different parameters such as thinning rate, number of connected components, execution time etc. Present paper focuses on Peak Signal to Noise Ratio, number of connected components, execution time and Mean Square error on Zhang and Suen algorithm and Guo and Hall algorithm.

목차

Abstract
 1. Introduction
  1.1. Need of Skeletonization
  1.2. Applications of Skeletonization
 2. Survey of Related Work
 3. Overview of Skeletonization Algorithms
 4. Zhang and Suen and Guo and Hall Algorithm
 5. Performance Measures
 6. Skeletonization Algorithms
 7. Results of ZS in Comparison to GH Algorithm
 8. Conclusion and Future Scope
 References

저자정보

  • Prof. Gulshan Goyal Associate Professor
  • Ritika Luthra Research Scholar

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.