earticle

논문검색

Improved Subgraph Estimation PageRank Algorithm for Web Page Rank

초록

영어

The traditional PageRank algorithm can’t efficiently dispose large data Webpage scheduling problem. This paper proposes an accelerated algorithm named topK-Rank .It is based on PageRank on the MapReduce platform. Owing to this algorithm ,Top k nodes can be found efficiently for a given graph without sacrificing accuracy. It can iteratively estimate lower/upper bounds of PageRank scores, and construct subgraphs in each iteration by pruning unnecessary nodes and edges. Theoretical analysis shows that this method guarantees result exactness. Experiments show that it can find top k nodes much faster than the existing approaches.

목차

Abstract
 1. Introduction
 2. PageRank
  2.1. The Description of PageRank
  2.2. Parallel Implementation of PageRank
 3. TopK-Rank
  3.1. A Full Description of TopK-Rank Algorithm
  3.2. The MapReduce Implementation of TopK-Rank
  3.3. The Time Complexity of the Algorithm
 4. Experiment and Result Analysis
  4.1. Experimental Platform and Data
  4.2. Experiment and Result Analysis
 5. Conclusion
 References

저자정보

  • Lanying Li The college of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
  • Qiuli Zhou The college of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
  • Yin Kong The college of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
  • Yiming Dong The college of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.