earticle

논문검색

State of the Art of finite GMM Based Biometrics Face Authentication Systems

초록

영어

This paper presents a comparative analysis of the performance of three estimation algorithms: Expectation Maximization (EM), Greedy EM Algorithm (GEM) and Figueiredo-Jain Algorithm (FJ) - based on the Gaussian mixture models (GMMs) for a Dynamic Biometrics Face Authentication Systems. An automated biometric systems for human identification measure a “signature” of the human body, compare the resulting characteristic to a database, and render an application dependent decision. A Dynamic Face From eNTERFACE 2005 Database is used and Simulation shows that finite mixture modal (GMM) is quite effective in modelling the genuine and impostor score densities. Hence, the still face information scheme based on dynamic biometrics face is robust and could be explored for identity authentication.

목차

Abstract
 1. Introduction
 2. Biometric Face Extraction and Recognition
  2.1. Face Detection
  2.2 Face Verification:
 3. Estimation of Match Score Densities
 4. Experiments and Results
 5. Conclusions
 References

저자정보

  • Soltane Mohamed Electrical Engineering & Computing Department, Faculty of Sciences & Technology, DOCTOR YAHIA FARES UNIVERSITY OF MEDEA, 26000 MEDEA, ALGERIA & Laboratoire des Systèmes Électroniques Avancées (LSEA)

참고문헌

    ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

    0개의 논문이 장바구니에 담겼습니다.