earticle

논문검색

Optimal Viewpoint Extraction of 3D Model Based on AdaBoost Iterative Algorithm

원문정보

초록

영어

According to the limitations of a single measurement algorithm in the current 3D models’ viewpoint extraction, this essay puts forward a viewpoint extraction algorithm based on AdaBoost iterative algorithm, which can make the features adaptive automatically. It, firstly, extracts 3D models’ feature descriptor and feature vector in the model library and adopts AdaBoost iterative algorithm to establish rules about classification and matching from geometric features and various viewpoint extraction algorithm; then, it constructs decision classifier in order to extract optimal viewpoint. In query process, the model obtains viewpoint extraction algorithm which can suit its geometric feature through decision classifier and then gets its best view by calculation. The experimental result shows this algorithm extraction effect is superior to the one by a single measurement algorithm.

목차

Abstract
 1. Introduction
 2. Research Method Summary
 3. Geometric Features and Viewpoint Extraction
  3.1. Extraction of SDF Feature Descriptor and Eigenvector
  3.2. Construction of Viewpoint Extraction Algorithm Library
  3.3. Construction of Decision Classifier and Viewpoint Extraction
 4. Examples and Analysis
  4.1. Analysis of Subjective Visual Sense Matching
  4.2. Statistical Analysis of Function Comparison
  4.3. Analysis of Algorithm Stability
 5. Conclusions
 References

저자정보

  • Dong Tao Eastern Liaoning University

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.