earticle

논문검색

A Feature Selection Algorithm towards Efficient Intrusion Detection

초록

영어

Feature selection algorithm plays a crucial role in intrusion detection, data mining and pattern recognition. According to some evaluation criteria, it gets optimal feature subset by deleting unrelated and redundant features of the original data set. Aiming at solving the problems about the low accuracy, the high false positive rate and the long detection time of the existing feature selection algorithm. In this paper, we come up with a feature selection algorithm towards efficient intrusion detection, this algorithm combines the correlation algorithm and redundancy algorithm to chooses the optimal feature subset. Experimental results show that the algorithm shows almost and even better than the traditional feature selection algorithm on the different classifiers.

목차

Abstract
 1. Introduction
  1.1. The background and Significance of the Research
  1.2. The Status of Feature Selection Algorithm at Home and Abroad
  1.3. The Problem Faced by Feature Selection Algorithm
  1.4 The Work in this Paper
 2. Feature Selection Algorithm
  2.1. Definitions
  2.2 The Commonly Used Method of Feature Selection
 3. Feature Selection Algorithm in this Paper
 4. Experimental Study
  4.1. Data Sets
  4.2. Pretreatment
  4.3. Experiment Results
 5. Conclusions
 References

저자정보

  • Chunyong Yin School of Computer and Software, Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • Luyu Ma School of Computer and Software, Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • Lu Feng School of Computer and Software, Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • Zhichao Yin Nanjing No.1 Middle School, Nanjing 210001, China
  • Jin Wang School of Computer and Software, Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science & Technology, Nanjing 210044, China

참고문헌

자료제공 : 네이버학술정보

    ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

    0개의 논문이 장바구니에 담겼습니다.