earticle

논문검색

A Double Mutation Cuckoo Search Algorithm for Solving Systems of Nonlinear Equations

초록

영어

This paper presents a double mutation cuckoo search algorithm (DMCS) to overcome the disadvantages of traditional cuckoo search algorithms, such as bad accuracy, low convergence rate, and easiness to fall into local optimal value. The algorithm mutates optimal fitness parasitic nests using small probability, which enhances the local search range of the optimal solution and improves the search accuracy. Meanwhile, the algorithm uses large probability to mutate parasitic nests in poor situation, which enlarges the search space and benefits the global convergence. The experimental results show that the algorithms can effectively improve the convergence speed and optimization accuracy when applied to basic test functions and systems of nonlinear equations.

목차

Abstract
 1. Introduction
 2. Cuckoo Search Algorithm
 3. Double Mutation Cuckoo Search Algorithm
  3.1. Double Mutation Operator
  3.2. Initial Population Generated by a Chaotic Array
  3.3. Handling Strategy of Boundary Values
  3.4. The Procedure of the Proposed Algorithm
 4. Experiment and Results
  4.1. Algorithm Simulation and Analysis
  4.2. The Solution of the Nonlinear Equations
 5. Conclusion
 References

저자정보

  • Chiwen Qu Department of Mathematics & Computer Information Engineering, Baise University, Baise 533000, China
  • Wei He Department of Mathematics & Computer Information Engineering, Baise University, Baise 533000, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.