earticle

논문검색

Optimization of the Smoothing Parameter of the Variable Kernel Estimator used in Bayes Classifier - Application to Microarray Data Analysis

초록

영어

The estimation of probability density function (pdf) by the nonparametric kernel methods requires a reliable estimate of the bandwidth. There have been several studies on how to efficiently estimate this parameter. In this work, we propose a new optimization method of the smoothing parameter of the variable kernel estimator (VKE) based on the statistical properties of the probability distributions of random variables. In this setting, we show how to use the maximum entropy principle for estimating the smoothing parameter. The optimized estimator is after used in building the Bayesian classifier. In the same setting, the estimated probability density function is called optimal in the sense of having a minimum error rate of classifying data. Finally, a practical implementation with the aid of a dataset of DNA microarray is used to illustrate the behavior of the optimization technique.

목차

Abstract
 1. Introduction
 2. Variable Kernel Estimator
 3. Bandwidth Selection Method
  3.1. Entropy
  3.2. Maximum Entropy Principle
  3.3. Criterion based on the Maximum Entropy Principle
  3.4. Choice of Parameter K of Variable Kernel Estimator
 4. Experimental Results
  4.1. Leukemia Dataset
  4.2. Colon Dataset
 5. Conclusion
 References

저자정보

  • Yissam Lakhdar Department of Physics, Faculty of Science, University Moulay Ismail Meknes, Morocco
  • El Hassan Sbai Ecole Supérieure de Technologie, University Moulay Ismail BP 3103 Route d’Agouray, 50006 Toulal, Meknes, Morocco

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.