earticle

논문검색

Research on High-Dimensional Data Reduction

초록

영어

In this paper, features of high-dimensional data are analyzed, and existing problems of the Canonical Correlation Analysis (CCA) are analyzed for a single view of a full supervised view data. In order to improve CCA, we introduce the method of classifier and present a Classifying to Reduce Correlation Dimensionality (CRCD). Meanwhile, combining big interval learning method, we propose the big correlation analysis (BCA). At last, experiments are respectively conducted by using artificial data set and UCI standard data set. The result shows that methods are feasible and effective.

목차

Abstract
 1. Introduction
 2. High-Dimensional Data Mining
  2.1. High-Dimensional Data Mining Features
  2.2. The Data View
  2.3. Why the High-Dimensional Data to Dimensionality Reduction?
  2.4. The Mature Data Dimension Reduction Method
  2.5. Problems
 3. Classifying to Reduce Correlation Dimensionality (CRCD)
  3.1. The Study of the CRCD
  3.2. The Verification Experiment
 4. Big Correlation Analysis (BCA)
  4.1. The Study of the Big Correlation Analysis (BCA)
  4.2. The Verification Experiment
 5. Conclusion
 Reference

저자정보

  • Cuihua Tian school of computer and information engineering, Xiamen University of Technology, Fujian Xiamen 361024, China, Universities in Fujian Province Key Laboratory of Things Application Technology, Fujian, Xiamen, 361024, China
  • Yan Wang school of computer and information engineering, Xiamen University of Technology, Fujian Xiamen 361024, China
  • Xueqin Lin school of computer and information engineering, Xiamen University of Technology, Fujian Xiamen 361024, China
  • Jing Lin School of International Languages, Xiamen University of Technology, Xiamen 361024, China
  • Jiangshui Hong school of computer and information engineering, Xiamen University of Technology, Fujian Xiamen 361024, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.