earticle

논문검색

A Review of Sentiment Analysis in Twitter Data Using Hadoop

원문정보

초록

영어

Twitter is an online social networking site which contains rich amount of data that can be a structured, semi-structured and un-structured data. In this work, a method which performs classification of tweet sentiment in Twitter is discussed. To improve its scalability and efficiency, it is proposed to implement the work on Hadoop Ecosystem, a widely-adopted distributed processing platform using the Map Reduce parallel processing paradigm. Finally, extensive experiments will be conducted on real-world data sets, with an expectation to achieve comparable or greater accuracy than the proposed techniques in literature.

목차

Abstract
 1. Introduction
 2. Problem Definition
 3. Literature Review
  3.1 Lin, Jimmy, and Alek Kolcz. "Large-Scale Machine Learning at Twitter." In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pp. 793-804. ACM, 2012.
  3.2 Bian, Jiang, Umit Topaloglu, and Fan Yu. "Towards Large-Scale Twitter Mining for Drug-Related Adverse Events" In Proceedings of the 2012 international workshop on Smart health and wellbeing, pp. 25-32. ACM, 2012.
  3.3 Liu, Bingwei, Erik Blasch, Yu Chen, Dan Shen, and Genshe Chen. "Scalable Sentiment Classification for Big Data Analysis Using Naive Bayes Classifier" In Big Data, 2013 IEEE International Conference on, pp. 99-104. IEEE, 2013.
  3.4 ÁlvaroCuesta, David F., and María D. R-Moreno. "A Framework for Massive Twitter Data Extraction and Analysis", In Malaysian Journal of Computer Science, pp 50-67 (2014):1.
  3.5 Skuza, Michal, and Andrzej Romanowski. "Sentiment analysis of Twitter Data within Big Data Distributed Environment for Stock Prediction" In Computer Science and Information Systems (FedCSIS), 2015 Federated Conference on, pp. 1349-1354. IEEE, 2015.
  3.6 Tare, Mohit, Indrajit Gohokar, Jayant Sable, Devendra Paratwar, and Rakhi Wajgi. "Multi-Class Tweet Categorization Using Map Reduce Paradigm" In International Journal of Computer Trends and Technology. pp 78 - 81 (2014)
  3.7 Comparitive Analysis
 4. Development Environment
 5. Development Methodology
  5.1 Data Streaming
  5.2. Preprocessing
  5.3 Sentiment Polarity Analysis
  5.4 Visualization
 6. Evaluation Metrics
 7. Conclusion
 References

저자정보

  • L.Jaba Sheela Panimalar Engineering College, Chennai, India

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.