원문정보
초록
영어
In this paper, we introduce a fuzzy inference systems for nonlinear inference using fuzzy cluster. Typically, the generation of fuzzy rules for nonlinear inference causes the problem that the number of fuzzy rules increases exponentially if the input vectors increase. To handle this problem, the fuzzy rules of fuzzy model are designed by dividing the input vector space in the scatter form using fuzzy clustering algorithm which expresses fuzzy cluster. From this method, complex nonlinear process can be modeled. The premise part of the fuzzy rules is determined by means of FCM clustering algorithm with fuzzy clusters. The consequence part of the fuzzy rules have four kinds of polynomial functions and the coefficient parameters of each rule are estimated by using the standard least-squares method. And we use the data widely used in nonlinear process for the performance and the nonlinear characteristics of the nonlinear process. Experimental results show that the non-linear inference is possible.
한국어
본 논문에서는 퍼지 클러스터를 이용한 비선형 추론을 위한 퍼지 추론 시스템을 소개한다. 전형적으로, 비선형 추론을 위한 퍼지 규칙의 생성은 일반적으로 입력 벡터 차원이 증가하면 규칙의 수가 지수적으로 증가하게 된다. 이러한 문제점을 해결하기 위해, 퍼지 클러스터를 표현할 수 있는 퍼지 클러스터링 알고리즘을 이용하여 입력 벡터 공간을 분산 형태로 분할하여 퍼지 모델의 규칙을 설계한다. 이러한 방법으로 복잡하고 비선형적인 공정을 퍼지 모델링 할 수 있다. 퍼지 규칙의 전반부는 퍼지 클러스터를 갖는 FCM 클러스터링 알고리즘에 의해 결정된다. 퍼지 규칙의 후반부는 4가지 형태의 다항식 함수의 형태를 가지며, 각 규칙의 후반부 파라미터들은 표준 최소자승법을 이용함으로써 추정된다. 그리고 비선형 공정의 특성 및 성능을 평가하기 위하여 비선형 공정으로 많이 이용되고 있는 데이터를 이용한다. 실험 결과는 비선형 추론이 가능하다는 것을 보여준다.
목차
Abstract
1. 서론
2. 퍼지 추론 시스템
2.1 전반부 동정
2.2 후반부 동정
3. 비선형 추론을 위한 비선형 공정
4. 결론
REFERENCES