earticle

논문검색

Exact Analytical Solution for Partial Differential Equilibrium Equations (Exact Solution of Navier - Stokes’s Equation)

원문정보

초록

영어

Non-quantum state particle gave kinetic energy by the inertia interaction, while quantum state particle stores its potential energy produced by atomic (or molecular) bondings. Schrödinger equations are those for the non-quantum state particle. The equation for quantum state particles are derived for non-steady state and steady state. General relativity is completed by deriving the equations for quantum state particles. The two dimensional stress tensors in the partial differential equilibrium equations can be converted to one dimensional tensors per unit volume, which generate Laplacian. The Laplacian has exact analytical solution and needs boundary conditions. It gives us exact solution of Navier - Stokes’s equation.

목차

1. Free Particle
 2. Non-quantum State Particle
  2-1 Time dependent Schrodinger equation
  2-2 Steady-State Schrodinger Equation
 3. Quantum State Particle and General Relativity(Nagative mass and Positive Mass)
 4. Exact Analytical Soulution for Partial Differential Equilibrium Equations and Discussions (Exact Solution of Navier-Strokes's Equation)
 References

저자정보

  • Hungkuk Oh Dept of Mechanical engineering, Ajou University South Korea
  • Yohan Oh Dept of life Sciences, Ajou University South Korea
  • Jeunghyun Oh Dept of life Sciences, Ajou University South Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.