원문정보
초록
영어
The fuzzy linear programming(FLP) is the useful approach to many real world problems under uncertainty. This paper deals with a FLP whose objective value is fuzzy. And the right hand sides of convergent equality constraints are fuzzy numbers. We assume that the membership function of the objective value is piecewise linear and those of the right hand side are trapezoidal. Each of these trapezoidal functions can be algebraically replaced with three linear functions. Then the FLP problem is transformed into the Zimmermann's symmetric model. The fuzzy solution based on the max-min rule can be obtained by solving the crisp linear programming problem derived from the symmetric model. A numerical example has illustrated our approach. The application of our approach to the inconsistent linear system can enable generate us to get define the useful and flexible inexact solutions within acceptable tolerance. Further research is required to generalize the membership function.
한국어
퍼지 선형계획법은 불확실성하에서의 문제들을 해결하는데 유용한 의사결정 모형이다. 본 연구에서는 목 적함수 값이 퍼지수이고 우변 상수도 퍼지수인 융합 등식 제약식을 갖는 퍼지 선형계획법 문제를 다룬다. 연구의 목적은 퍼지 해를 정의하고 그것을 구하는 절차를 모색하는 것이다. 목적함수 값에 대한 소속 함수로 부분 선형함수 를, 제약식의 소속 함수로는 사다리꼴 함수를 도입한다. 사다리꼴 함수는 구간별 선형 함수 들로 나누어 나타낼 수 있다. 따라서 모든 소속 함수들을 선형식 들로 대체함으로써 퍼지 선형계획 모형을 Zimmermann의 대칭 선형 모형 으로 바꿀 수 있다. 여기에 최대-최소 기준을 적용하여 일반 선형계획법 문제를 도출해 내고, 이 문제의 최적해로부 터 원 문제의 퍼지 해를 얻게 된다. 본 논문에서는 사다리꼴 소속 함수에 대해 살펴보았는데 앞으로는 오목 부분 선형함수와 같은 좀 더 일반화된 소속 함수에 대한 연구가 필요하다.
목차
Abstract
1. 서론
2. 선형계획법으로의 전환
3. 수치 예제
4. 결론
ACKNOWLEDGMENTS
REFERENCES