earticle

논문검색

Kernel Fisher Discriminant Analysis for Indoor Localization

초록

영어

In this paper we introduce Kernel Fisher Discriminant Analysis (KFDA) to transform our database of received signal strength (RSS) measurements into a smaller dimension space to maximize the difference between reference points (RP) as possible. By KFDA, we can efficiently utilize RSS data than other method so that we can achieve a better performance.

목차

Abstract
 1. INTRODUCTION
 2. INDOOR LOCALIZATION VIA KERNEL FISHER DISCRIMINANT ANALYSIS
  2.1 Localization Algorithm
  2.2 Kernel Fisher Discriminant Analysis for Localization
 3. PARTICLE FILTER BASED FINGERPRINTING LOCALIZATION
 4. PERFORMANCE EVALUATION
 ACKNOWLEDGEMENT
 REFERENCES

저자정보

  • Nhan V. T. Ngo Kyunghee University, South Korea
  • Kyung Yong Park Kyunghee University, South Korea
  • Jeong G. Kim Kyunghee University, South Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.