earticle

논문검색

Human Action Recognition Using Accumulated Moving Information

초록

영어

This paper proposes a human action recognition algorithm which can be efficiently applied to a real-time intelligent surveillance system. This method models the background, obtains the difference image between input image and the modeled background image, extracts the silhouette of human object from input image, and recognizes human action by using coordinates of object, directions of that and accumulated moving regions of that. The human actions recognized in this study amount to a total of 8 type of actions, which include walking, raising an arm (left, right), raising a leg (left, right), sitting and crouching. The proposed method has been experimented for 8 different movements using 4 people using video input of a webcam and it has shown good results in terms of recognizing human action.

목차

Abstract
 1. Introduction
 2. Human Action Recognition Using Accumulated Moving Information Correct
  2.1. Creation of Accumulated Moving Information Image Using Object-Background Segmentation and Moving Region
  2.2. Action Recognition Using Moving Region
 3. Test and Result
 4. Conclusion
 Acknowledgements
 References

저자정보

  • Nae-Joung Kwak Dept. Communication & Information, Chungbuk National University Cheongju, 362-763, KOREA
  • Teuk-Seob Song Div. Convergence Computer and Media, Mokwon University, Daejeon, 302-729, KOREA

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.