earticle

논문검색

Least Squares Twin Support Vector Machine for Multi-Class Classification

원문정보

초록

영어

Twin support vector machine (TWSVM) was initially designed for binary classification. However, real-world problems often require the discrimination more than two categories. To tackle multi-class classification problem, in this paper, a multiple least squares twin support vector machine is proposed. Our Multi-LSTSVM solves K quadratic programming problems (QPPs) to obtain K hyperplanes, each problem is similar to binary LSTSVM. Comparison against the Multi-LSSVM, Multi-GEPSVM, Multi-TWSVM and our Multi-LSTSVM on both UCI datasets and ORL, YALE face datasets illustrate the effectiveness of the proposed method.

목차

Abstract
 1. Introduction
 2. Background
  2.1. Least Squares Support Vector Machine (LSSVM)
  2.2. Least Squares Twin Support Vector Machine (LSTSVM)
 3. Multi-LSTSVM
  3.1. Linear Multi-LSTSVM
  3.2. Nonlinear Multi-LSTSVM
 4. Experimental Results
  4.1. UCI Datasets
  4.2. Image Classification
 5. Conclusions
 Acknowledgments
 References

저자정보

  • Sugen Chen School of Mathematics & Computational Science, Anqing Normal University, Anqing Anhui, 246133, PR China
  • Juan Xu School of Mathematics & Computational Science, Anqing Normal University, Anqing Anhui, 246133, PR China

참고문헌

자료제공 : 네이버학술정보

    ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

    0개의 논문이 장바구니에 담겼습니다.