earticle

논문검색

Time PLOT과 이동평균 융합 시계열 데이터 예측

원문정보

Forecasting the Time-Series Data Converged on Time PLOT and Moving Average

이준연

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

It is very difficult to predict time-series data. This is because data obtained from the signal having a non-linear characteristic has an uncertainty. In this paper, By differentiating time-series data is the average of the past data under the premise that change depending on what pattern, and find the soft look of time-series change pattern. This paper also apply the probability variables to generalize time-series data having a specific data according to the reflection ratio of the differentiation. The predicted value is estimated by removing cyclic movement and seasonal fluctuation, and reflect the trend by extracting the irregular fluctuation. Predicted value has demonstrated the superiority of the proposed algorithm and compared with the best results by a simple moving average and the moving average.

한국어

시계열 데이터를 예측하는 것은 매우 어려운 작업이다. 비선형적인 특성을 갖는 신호에서 얻어지는 데이터들이 불확실성을 가지고 있기 때문이다. 본 논문은 특정 시계열 데이터의 정확한 예측을 위하여 시계열 자료가 어떤 패턴에 따라 변화한다는 전제하에서 과거 자료들을 평균하여 미분으로써, 시계열 변화 패턴의 찾았다. 또한 미분 데이터의 반영 비율에 따라 특이성을 갖는 시계열데이터를 일반화하기 위하여 확률변수를 적용하였다. 순환변동과 계절변동을 소거하고, 불규칙 변동만을 추출하여 경향의 추세를 더한 예측값을 계산하게 된다. 이렇게 예측된 값은 이동평균과 단순이동평균에 의하여 가장 좋은 결과값을 갖는 알고리즘과 비교를 통하여 제안 알고리즘의 우수성을 입증하였다.

목차

요약
 Abstract
 1. 서론
 2. 예측의 정확도 측정
 3. 시계열 데이터 분석
  3.1 데이터 전처리
 4. 결론
 ACKNOWLEDGMENTS
 REFERENCES

저자정보

  • 이준연 Jun-Yeon Lee. 동명대학교 미디어공학과

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.