earticle

논문검색

Particle Filter Target Tracking Algorithm Based on MCMC Iteration Cubature

초록

영어

In view of the problem of particle degradation and tracking accuracy in the standard particle filter tracking target algorithm, a new improved particle filter algorithm called Iterated Cubature Kalman Particle Filter (ICKPF) is proposed in this paper. The new ICKPF algorithm is based on the Markov Chain Monte Carlo (MCMC), and the cubature rule based on numerical integration method is used to calculate the mean and covariance, which generates the proposal distribution for the particle filter. The current measurements are integrated into the proposal distribution. Therefore, degree of approximation to the system posterior density is improved. Simulation results show that the estimation error of the ICKPF-MCMC algorithm is much better than other algorithms.

목차

Abstract
 1. Introduction
 2. Standard Particle Filter Algorithm (PF)
 3. Iterative Cubature Kalman Particle Filter (ICKPF)
 4. Iteration Cubature Kalman Particle Filter based on MCMC
  4.1. MCMC Moving Steps
  4.2. The Iterative Cubature Particle Filter Combined MCMC Algorithm
 5. Simulation Results and Analysis
 6. Conclusion
 Acknowledgements
 References

저자정보

  • Song Gao School of Electronic Information Engineering Xi'an Technological University, Xi'an 710021, China
  • Yenan Liu School of Electronic Information Engineering Xi'an Technological University, Xi'an 710021, China
  • Chaobo Chen School of Electronic Information Engineering Xi'an Technological University, Xi'an 710021, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.