earticle

논문검색

Robust Scalable Algorithm Applied to Real World Problem

초록

영어

Advances in digital sensors, communications, computation, and storage have created huge collections of data, capturing information of value to business, science, government, and society. Many machine learning algorithms do not scale beyond data sets of a few million elements or cannot tolerate the statistical noise and gaps found in real-world data. Further research is required to develop algorithms that apply in real-world situations and on data sets of trillions of elements. In this paper we propose a conjugate based novel algorithm to handle the huge collections of data. Through the experimental results, proposed method performs well on huge data from UCI machine learning repository data set.

목차

Abstract
 1. Introduction
 2. Incremental KPCA
  2.1. Eigenspace Updating Criterion
 3. Conjugate LS-SVM for Real World Data
 4. Experiment
  4.1. HIV-1 protease cleavage Data Set
  4.2. TV News Channel Commercial Detection Data Set
  4.3. Gas Sensor Array under Dynamic Gas Mixtures Data Set
 5. Conclusion and Remarks
 References

저자정보

  • Byung Joo Kim Youngsan University Department of Computer Engineering, Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.