earticle

논문검색

An Improved Compression and Storage Algorithm of the Stiffness Matrix of 3D-FEM based on Rider Binary Classification and Negative Sign CSR

초록

영어

In order to reduce the data storage and improve data compression ratio of the stiffness matrix of 3D finite element, after analyzed the relationship between nonzero submatrix and generalized adjacent nodes of the stiffness matrix, this paper proposes an improved stiffness matrix compression algorithm, which combined negative sign compressed sparse line and a rider to store binary classification method. Then the improved algorithm is applied to the storage of the stiffness matrix of 3D-FEM. Through experimental simulation, the results show that this method saves a lot of storage space to ensure the validity of data for finite element analysis.

목차

Abstract
 1. Introduction
 2. Storage Method of the Stiffness Matrix based on CSR
  2.1 Traditional CSR Storage Method of the Stiffness Matrix
  2.2 CSR storage Method based on the Distribution Law of Nonzero Submatrix
  2.3 Negative Sign CSR Storage Method
  2.4 Generation of Stiffness Matrix
 3. Storage Method based on Rider Binary Classification
  3.1 Stiffness Matrix Compression and Storage Method based on Rider Binary Classification
  3.2 The Stiffness Matrix Storage and Reading Algorithm based on Rider Binary Classification and Negative Sign CSR
 4. Algorithm Verification
  4.1 A Stiffness Matrix
  4.2 Beam Model
 5. Conclusions
 ACKNOWLEDGEMENTS
 References

저자정보

  • Pei Dongmei Computer and Information Engineering College, Inner Mongolia Normal University, Hohhot, China
  • Meng Fanjun Computer and Information Engineering College, Inner Mongolia Normal University, Hohhot, China
  • Wang HaiLong College of Network Technology Inner Mongolia Normal University, Hohhot, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.