earticle

논문검색

Intrusion Detection System based on Hidden Conditional Random Fields

원문정보

초록

영어

Intrusion detection is an important way to ensure the security of computers and networks. In this paper, a new intrusion detection system (IDS) is proposed based on Hidden Conditional Random Fields (HCRFs). In order to optimize the performance of HCRFs, we bring forward the Two-stage Feature Selection method, which contains Manual Feature Selection method and Backward Feature Elimination Wrapper (BFEW) method. The BFEW is a feature selection method which is introduced based on wrapper approach. Experimental results on KDD99 dataset show that the proposed IDS not only has a great advantage in detection efficiency but also has a higher accuracy when compared with other well-known methods.

목차

Abstract
 1. Introduction
 2. Related Works
 3. Hidden Conditional Random Fields for Intrusion Detection
 4. Two-stage Feature Selection
  4.1. Manual Feature Selection
  4.2. Backward Feature Elimination Wrapper
 5. Framework of the IDS
 6. Experiments and Results
  6.1. Feature Selection with BFEW
  6.2. Detection Models Building for Each Layer
  6.3. The Overall IDS Performance
  6.4. Comparison with Other IDSs
 7. Conclusion and Future Works
 Acknowledgments
 References

저자정보

  • Jun Luo Key Laboratory of Optoelectronic Technology & System, Ministry of Education, Chongqing University, Chongqing 400030, China
  • Zenghui Gao Key Laboratory of Optoelectronic Technology & System, Ministry of Education, Chongqing University, Chongqing 400030, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.