earticle

논문검색

Mining Frequent Spatio-Temporal Items in Trajectory Data

초록

영어

The time aspect is not currently taken into account for finding a region of interesting (ROI) or a hot region, so that due to the time to visit frequently a place cannot be determined, it is difficult to discover the visiting regularity for a moving object. To this end, the spatio-temporal item (STI) and frequent spatio-temporal item (FSTI) integrated spatial and temporal attributes are defined. The FSTIs can represent a moving object often visits which area in what time, which can provide more useful information to improve the level of the location-based services(LBS). In order to find FSTIs, STIs are generated by using a density-based clustering algorithm to recognize the stay regions of objects, and then the STIs are mapped to 3D-grids integrated spatial and temporal dimensions. Finally, the extraction - merger strategy is used on the frequent grid cells to recombine the FSTIs. Experimental results on real dataset show that the approach proposed for mining FSTIs is effective.

목차

Abstract
 1. Introduction
 2. STIs Generation
  2.1. Definition of STI
  2.2. Generate STIs from Stay Regions
 3. STIs Mapping
  3.1. Set the 3D-grid Cells
  3.2. Map STIs to 3D-grids
 4. Extraction-merger Strategy
 5. Experiment
  5.1. Select Dataset
  5.2. Set the Parameters
  5.3. Result and Analysis
 6. Conclusion and Future Work
 References

저자정보

  • Fengjiao Yin School of Information Science and Engineering Dalian Polytechnic University No.1, Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
  • Xu Li School of Information Science and Engineering Dalian Polytechnic University No.1, Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
  • Chunlong Yao School of Information Science and Engineering Dalian Polytechnic University No.1, Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
  • Lan Shen School of Information Science and Engineering Dalian Polytechnic University No.1, Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.