earticle

논문검색

A Distribution Model with Pattern Structure in Formal Concept Analysis for Meteorological Data Minging

초록

영어

Using data mining technology to analyze the huge amounts of meteorological data plays an important role in improving the accuracy of weather forecasts. After analyzed the features of meteorological data, a distributed meteorological data mining models using the pattern structure in formal concept analysis is proposed in this paper. Since there exists large numerical, boolean, and geographic concepts in meteorological data, using classic methods of formal concept analysis needs to build single-valued formal context. This paper adopts concept lattice pattern structure to avoid such conversions and the results of rules mining have higher readability and efficiency. This pattern structure of concept lattice is extended to the distributed model to improve data processing capability.

목차

Abstract
 1. Introduction
 2. Basic Definition of Pattern Structure
 3. Similar Computing in Meteorological Data
  3.1. Numerical Interval
  3.2. Geographical Regional Information
  3.3. Boolean Value
  3.4 Mixed Type Vector
 4. The Construction of the Pattern of Concept Lattice
  4.1 The Conversions of Pattern Structure
  4.2 The Construction of the Pattern of Concept Lattice
 5. Experimental Results and Analysis
 6. Conclusion
 Acknowledgements
 References

저자정보

  • Xiajiong Shen Institute of Data and Knowledge Engineering, Henan University, Kaifeng, Henan 475004, China
  • Lei Zhang Institute of Data and Knowledge Engineering, Henan University, Kaifeng, Henan 475004, China
  • Daojun Han Institute of Data and Knowledge Engineering, Henan University, Kaifeng, Henan 475004, China
  • Peiyan Jia Institute of Data and Knowledge Engineering, Henan University, Kaifeng, Henan 475004, China

참고문헌

자료제공 : 네이버학술정보

    ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

    0개의 논문이 장바구니에 담겼습니다.