earticle

논문검색

Quantitative investment Based on Artificial Neural Network Algorithm

초록

영어

Financial investment has become an important issue, there are many trading strategies and parameters based on quantitative models, this paper use neural network algorithm to optimization strategy parameters, various combinations of optimization strategies, as well as the evolution of new strategies to generate better returns. The empirical results show that this method has a stable and substantial return on investment, neural network can be used as an aid for decision making investments in securities.

목차

Abstract
 1. Introduction
 2. Multi-Factor Model Based on Neural Network
 3. Auto Encoders
 4. Algorithm Principle
  4.1. Probabilistic Neural Network (PNN)
  4.2. Radial Basis Function Neural Network (RBFNN)
  4.3. Hybrid Neural Network Structure (RBF-PMNN)
  4.4. Learning Algorithm Of Radial Basis Function Neural Network Hybrid Probability (RBF- PMNN)
 5. Trading Strategies
 6. Stock -Picking System
 7. Conclusion
 References

저자정보

  • Xia Zhang Department of Software Technology, Shenzhen Polytechnic

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.