earticle

논문검색

Collaborative Filtering Recommendation Algorithm based on Trust Propagation

원문정보

초록

영어

Aiming at the problems that the existing model-based collaborative filtering algorithm has low recommendation accuracy and small recommendation coverage, we propose a collaborative filtering recommendation algorithm based on the trust propagation by introducing the trust information of social network to extend the matrix factorization-based recommendation model. We first design a set of trust propagation rules based on the direct trust relationships of the social network, so as to propagate the trust relationship in the social networks, and get to quantize the new trust relationship. Then we load the quantitative trust relations after the trust propagation as the trust weight into the matrix factorization-based model according to the characteristics that the matrix factorization technique can reduce the dimension of large-scale datasets.

목차

Abstract
 1. Introduction
 2. Related Definitions
 3. Collaborative Filtering Recommendation Model and Algorithm based on Trust Propagation
  3.1. Recommendation Algorithm based on Matrix Factorization
  3.2. Recommendation Algorithm based on Trust Propagation Mechanism
 4. Experimental Analysis and Results
  4.1. Experiment Data Set
  4.2 Test Environment Configuration
  4.3. Evaluation Index in the Experiment
  4.4. Validation of the Proposed Algorithm
  4.5. Validation of Parameter k’s Influence on Experiment Results
 5. Conclusion
 References

저자정보

  • Miao Duan Jilin Jianzhu University, Jinlin 130118, china

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.