earticle

논문검색

Anomaly-based Intrusion Detection using Multiclass-SVM with Parameters Optimized by PSO

초록

영어

Intrusion detection systems (IDS) play an important role in defending network systems from insider misuse as well as external attackers. Compared with misuse-based techniques, anomaly-based intrusion detection techniques perform well in detecting new attacks. Firstly, this paper proposes a feature selection algorithm based on SVM (termed FS-SVM) to reduce the dimensionality of sample data. Moreover, this paper presents an anomaly-based intrusion detection algorithm, i.e., multiclass support vector machine (MSVM) with parameters optimized by particle swarm optimization (PSO) (termed MSVM-PSO), to detect anomalous connections. To verify the effectiveness of these two proposed algorithms (FS-SVM and MSVM-PSO) and the detection precision of MSVM-PSO, this paper conducts experiments on the famous KDD Cup dataset. This paper compares MSVM-PSO with three commonly adopted algorithms, namely, Bayesian, K-Means, and multiclass SVM with parameters optimized grid method (MSVM-grid). The experimental results show that MSVM-PSO outperforms these three algorithms in detection accuracy, FP rate, and FN rate.

목차

Abstract
 1. Introduction
 2. Related Work
  2.1. Intrusion Detection
  2.2. Feature Selection (FS)
  2.3. Support Vector Machines (SVMs)
 3. Preliminaries
  3.1. The Basic Idea of SVM
  3.2. C-support Vector Classification (C-SVC)
 4. A Feature Selection Algorithm based on SVM (FS-SVM)
 5. An Anomaly-Based Intrusion Detection Algorithm based on Multiclass SVM with Parameters Optimized by PSO
  5.1. A multi-Class Classification Algorithm based on SVM
  5.2. Parameter Optimization by PSO
 6. Experiments and Analyses
  6.1. Dataset Description
  6.2. The Selected Features
  6.3. Experimental Results and Analyses
 7. Conclusion and Future Work
 Acknowledgments
 References

저자정보

  • GuiPing Wang College of Computer Science, Chongqing University, Chongqing, China
  • ShuYu Chen College of Software Engineering, Chongqing University, Chongqing, China
  • Jun Liu College of Computer Science, Chongqing University, Chongqing, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.