earticle

논문검색

A Practical Video Fragment Identification System

초록

영어

In this paper, we present a practical identification approach of video fragment for digital video files. Before analyzing the video content, we must decode it based on its encoding format first. In order to effectively identify the format of a fragment, a format classification is performed before the format identification. The methods of format classification and identification are discriminative subspace clustering (DiSC) and the K-nearest neighbor (KNN).Because of losing the meta-information, we add a maximum similar header (MSH) to the front of the fragment to recover the video content. We adopt a simple key frame detection method using standard deviation and mean value. Motion vectors of macro blocks are utilized to classify the video features for effectively identifying the video. Several edges of frames are accumulated and compose a video feature. The experimental results show the evaluations of the video format classification and identification, fragment recovery, and content identification.

목차

Abstract
 1. Introduction
 2. Video Format Classification and Identification
  2.1. Format Feature Extraction
  2.2. Format Classification Using DiSC
  2.3. Format Identification Using KNN
 3. Video Fragment Recovery
 4. Video Classification and Identification
 5. Performance Evaluation
 6. Conclusion
 Acknowledgments
 References

저자정보

  • Xun Jin Dept. of Copyright Protection, Dept. of Content and Copyright Sangmyung University, Seoul, Korea, Sangmyung University, Seoul, Korea
  • Jongweon Kim Dept. of Copyright Protection, Dept. of Content and Copyright Sangmyung University, Seoul, Korea, Sangmyung University, Seoul, Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.