earticle

논문검색

Study on Thinking Evolution based ant Colony Algorithm in Typical Production Scheduling Application

초록

영어

Aiming at solving the NP-hard workshop production scheduling problems, proposed one kind based on mind evolutionary algorithm. The algorithm in the traditional ant colony algorithm is established, and the combination of evolutionary thought and local optimization idea overcomes the basic ant colony algorithm is easy to fall into local optimal defects, the improved state transition rules, defining a pheromone range, improve the pheromone update strategy, and the increase of neighborhood search. Experimental results show that, for a typical production scheduling problems, based on mind evolutionary ant colony algorithm can obtain the optimal solution in theory, optimal solution, the solution and average three indicators are better than the basic ant colony algorithm, showed good performance.

목차

Abstract
 1. Introduction
 2. Basic Principles of an Ant Colony Algorithm
 3. Ant Colony Algorithm Based On Evolutionary Thinking
  3.1. Mind Evolutionary Algorithm
  3.2. Ant Colony Algorithm based on Evolutionary Thinking
 4. Ant Colony Algorithm of Typical Production Scheduling Problem
  4.1. Typical Job Shop Problem
  4.2. Improved State Transition Rules
  4.3. Defining the Scope of Pheromone
  4.4. Pheromone Update Strategy
  4.5 Increasing in Neighborhood Search
 5. Simulation Testing and Analysis
 6. Conclusions
 Acknowledgements
 References

저자정보

  • Xianmin Wei School of Computer Engineering, Weifang University 5147 Eastern Dongfeng Street, Weifang 261061, China
  • Peng Zhang School of Computer Engineering, Weifang University 5147 Eastern Dongfeng Street, Weifang 261061, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.